The sum-product estimate for large subsets of prime fields
نویسندگان
چکیده
منابع مشابه
The Sum-product Estimate for Large Subsets of Prime Fields
Let Fp be the field of prime order p. It is known that for any integer N ∈ [1, p] one can construct a subset A ⊂ Fp with |A| = N such that max{|A+ A|, |AA|} p|A|. One of the results of the present paper implies that if A ⊂ Fp with |A| > p2/3, then max{|A+ A|, |AA|} p|A|.
متن کاملun 2 00 7 the sum - product estimate for large subsets of prime fields
Let F p be the field of a prime order p. It is known that for any integer N ∈ [1, p] one can construct a subset A ⊂ F p with |A| = N such that max{|A + A|, |AA|} ≪ p 1/2 |A| 1/2. In the present paper we prove that if A ⊂ F p with |A| > p 2/3 , then max{|A + A|, |AA|} ≫ p 1/2 |A| 1/2 .
متن کاملSlightly Improved Sum-product Estimates in Fields of Prime Order
Let Fp be the field of residue classes modulo a prime number p and let A be a nonempty subset of Fp. In this paper we show that if |A| p , then max{|A ± A|, |AA|} |A|; if |A| p, then max{|A ± A|, |AA|} v min{|A|( |A| p0.5 ), |A|( p |A| )}. These results slightly improve the estimates of Bourgain-Garaev and Shen. Sum-product estimates on different sets are also considered.
متن کاملA Quantified Version of Bourgain's Sum-Product Estimate in Fp for Subsets of Incomparable Sizes
Let Fp be the field of residue classes modulo a prime number p. In this paper we prove that if A,B ⊂ F∗p, then for any fixed ε > 0, |A + A| + |AB| (
متن کاملAn explicit sum-product estimate in Fp
Let Fp be the field of residue classes modulo a prime number p and let A be a non-empty subset of Fp. In this paper we give an explicit version of the sum-product estimate of Bourgain, Katz, Tao and Bourgain, Glibichuk, Konyagin on the size of max{|A+A|, |AA|}. In particular, our result implies that if 1 < |A| ≤ p7/13(log p)−4/13, then max{|A + A|, |AA|} ≫ |A|15/14 (log |A|)2/7 . 2000 Mathemati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2008
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-08-09386-6